A model for the charge transfer probability in helium nanodroplets following electron impact ionization

نویسندگان

  • Andrew M. Ellis
  • Shengfu Yang
چکیده

A theoretical model has been developed to describe the probability of charge transfer from helium cations to dopant molecules inside helium nanodroplets following electron impact ionization. The location of the initial charge site inside helium nanodroplets subject to electron impact has been investigated and is found to play an important role in understanding the ionization of dopants inside helium droplets. The model is consistent with a charge migration process in small helium droplets that is strongly directed by intermolecular forces originating from the dopant, whereas for large droplets (tens of thousands of helium atoms and larger) the charge migration increasingly takes on the character of a random walk. This suggests a clear droplet size limit for the use of electron impact mass spectrometry for detecting molecules in helium droplets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communication: the formation of helium cluster cations following the ionization of helium nanodroplets: influence of droplet size and dopant.

The He(n)(+)/He(2)(+) (n ≥ 3) signal ratios in the mass spectra derived from electron impact ionization of pure helium nanodroplets are shown to increase with droplet size, reaching an asymptotic limit at an average droplet size of approximately 50,000 helium atoms. This is explained in terms of a charge hopping model, where on average the positive charge is able to penetrate more deeply into t...

متن کامل

Abstract Submitted for the MAR08 Meeting of The American Physical Society Suppressing the fragmentation of fragile molecules in helium nan- odroplets by co-embedding with water: Possible role of the electric dipole moment1

Submitted for the MAR08 Meeting of The American Physical Society Suppressing the fragmentation of fragile molecules in helium nanodroplets by co-embedding with water: Possible role of the electric dipole moment1 YANFEI REN, VITALY KRESIN, University of Southern California — When fragile molecules are embedded in liquid helium nanodroplets, electron-impact ionization usually leads to fragmentati...

متن کامل

Nuclear-Charge Screening in Positronium Formation from Helium Atoms

An analytical treatment of the electron screening effect within an active-electron model is given for positronium formation from helium atoms. A first-order distorted wave approximation with correct boundary conditions is applied to evaluate the transition amplitude. In the range of impact energy for which the introduced perturbative approach is valid, both the total and differential cross sect...

متن کامل

Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechani...

متن کامل

Electron impact ionization of water-doped superfluid helium nanodroplets: observation of He(H(2)O)(n)(+) clusters.

Electron impact mass spectra have been recorded for helium nanodroplets containing water clusters. In addition to identification of both H(+)(H(2)O)(n) and (H(2)O)(n)(+) ions in the gas phase, additional peaks are observed which are assigned to He(H(2)O)(n)(+) clusters for up to n=27. No clusters are detected with more than one helium atom attached. The interpretation of these findings is that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008